Algorithms:
Survey of Common
Running Times




Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as

taking a very long time.

2

n3

n nlog, n n L5k 2 n!
n=10 < 1 sec < 1 sec < 1 sec < lisec < 1 sec < 1 sec 4 sec
n=30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <l1sec <1sec 1sec 12,892 years 10} years  very long

n=1,000 < 1 sec < 1 sec 1 sec 18 min very long  very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long




Constant time

Constant time. Running time is O(1).

bounded by a constant,
Examples. which does not depend on input size n

* Conditional branch.

« Arithmetic/logic operation.

» Declare/initialize a variable.

« Follow a link in a linked list.

« Access element i in an array.

« Compare/exchange two elements in an array.



Linear Time: O(n)

Linear time. Running time is proportional o input size.

Computing the maximum. Compute maximum of n numbers qy, ..., a,.




Linear time

Linear time. Running time is O(n).

Merge two sorted lists. Combine two sorted linked lists A=aq,,q,, ...,a,and
B=by,b,,....b, into a sorted whole.
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O(n) algorithm. Merge in mergesort.

Merged result
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WHILE (both lists are nonempty)
IF (ai < bj) append a; to output list and increment i.
ELSE append b; to output list and increment j.

Append remaining elements from nonempty list to output list.



Logarithmic time

Logarithmic time. Running time is O(log n).

Search in a sorted array. Given a sorted array A of n distinct integers and an
integer x, find index of x in array.

remaining elements

O(log n) algorithm. Binary search. /
* Invariant: If x is in the array, then x is in A[lo .. hi].
 After k iterations of WHILE loop, (hi—lo+1) < n/2k = k < 1+log n.

lo <= 1; hi < n.

WHILE (lo < hi)
mid < |(lo + hi)/2].
IF (x < Almid]) hi < mid - 1.
ELSE IF (x > A[mid]) lo < mid + 1.
ELSE RETURN mid.

RETURN —-1.



Linearithmic time

Linearithmic time. Running time is O(n log n).

Sorting. Given an array of n elements, rearrange them in ascending order.

O(n log n) algorithm. Mergesort.
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O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
\
also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x, ..., X, on
which copies of a file arrive at a server, what is largest
interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the
sorted list in order, identifying the maximum gap between
successive time-stamps.



Quadratic time

Quadratic time. Running time is O(n?).

Closest pair of points. Given a list of n points in the plane (x;,y,), ..., (x,,y,),
find the pair that is closest to each other.

O(n?) algorithm. Enumerate all pairs of points (with i <).

min <— ®,
FOR i=1TOn
FOR j=i+1TOn
d < (xi—x)? + (yi—yj)>
IF (d < min)

min < d.

Remark. Q(n?) seems inevitable, but this is just an illusion. [see §5.4]



Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given nsets Sy, .., S, each of which is a subset of
1,2, .., n,is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.




Cubic time

Cubic time. Running time is O(n3).

3-Sum. Given an array of n distinct integers, find three that sum to 0.

O(n?) algorithm. Enumerate all triples (with i <j<k).

FOR i =1 TO n
FOR j =i+1 TO n
FOR k= j+1 TO n
IF (ai+aj+ax= 0)

RETURN (ai, aj, ax).

Remark. Q') seems inevitable, but O(?) is not hard. [see next slide]



Polynomial time

Polynomial time. Running time is O(n*) for some constant & > 0.

Independent set of size k. Given a graph, find k£ nodes such that no two
are joined by an edge. N

k is a constant

O(n*) algorithm. Enumerate all subsets of k nodes.

FOREACH subset S of k£ nodes:
Check whether § is an independent set.
IF (§ is an independent set)

RETURN §.
independent set of size 3

* Check whether S is an independent set of size k takes O(k?) time.
* Number of k-element subsets = (n) _nn=Dm-2)x--x(n-k+1) _ n*
O n* 1 k) = O(nb). k

k(k—1)(k—2)x---x1 - l.%!

poly-time for k= 17, but not practical




Exponential time

Exponential time. Running time is 0(2""') for some constant k£ > 0.
Independent set. Given a graph, find independent set of max cardinality.

O(n*2" algorithm. Enumerate all subsets of n elements.

S* =,
FOREACH subset S of n nodes:

Check whether § is an independent set.

IF (S is an independent set and | S| > | $*|)
§% < S. independent set of max cardinality

RETURN S$*,



Exponential time

Exponential time. Running time is 0(2""') for some constant k > 0.
Euclidean TSP. Given n points in the plane, find a tour of minimum length.

O(n x n!) algorithm. Enumerate all permutations of length n.

n* — .
FOREACH permutation 7t of n points:
Compute length of tour corresponding to .

IF (length(st) < length(st*))

TF < . \

for simplicity, we'll assume Euclidean
distances are rounded to nearest integer
(to avoid issues with infinite precision)

RETURN 7T*.



Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
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Suggested Reading

= Algorithm Design by Jon Kleinberg, Eva Tardos
¢ Chapter 2
® Section: 2.4






